

The story of the "Uncrackable" Lockbox, and Why
Hackers Need to Work Alongside Developers

Matthew Ruffell
Chcon 2019

Challenge #1

Information and Scope
● We are given:

– Password - “TimeLock”.
– Answers to questions - “0.02”.
– Time range – Start and end, both UTC.

● This limits scope to time lock mechanism only.

Reconnaissance

Files are encrypted with:
● Hash of password
● Random generated

file
● No mention of Time?

Running TimeLock

Unlocking a LockBox

Analysing Strings
● “Incorrect answers”
● “%ld days %ld hours %ld

sec until data is available”

● “Select folder where %s will
be created”

● “Reveal file %s in Windows
Explorer?”

Xref Strings – Hackers Best Friend

The “true” Path Leads to File Writing

TimeLock Mechanism == If Statements

Patch jbe -> jmp

What Happens If We Patch It Out?

Patched Logic

Looks Promising...

Loot #1

Vulnerability:
● Checks placed after decryption is too late.

How to Fix:
● Time is a secret, and needs to be involved in
the encryption process.

● Executables cannot be a root of trust.
● Key derivation should be handled by a third
party.

Lessons Learned:

Challenge #2

What Changed?
● “...encrypted with time

lock data, not just
password and [question]
answer”

● Decrypted data must now be
“validated”.

● Validation implies correct
BTC network time.

Plan of Attack
● Locate where the time is passed into decryption

function, set it to future.
● We know what the times are. Keep an eye out for:

– 22/02/2019 00:00 UTC becomes 1550793600. Hex:
0x5C6F3B80

– 23/02/2019 00:00 UTC becomes 1550880000. Hex:
0x5C708D00

Opening Lockboxes

Jumping to String

Looking Upwards

Jumping to String

Looking Upwards

Setting Up Breakpoints

Decryption Function Found

Validation Loop Immediately Below

Breakthrough Found

0x5C4E2C15 looks familiar

Converting to decimal: 1548626965

This is a Unix timestamp!
28/01/19 11:09:25

Modifying Timestamp

Stepping Over Decryption

Looks Promising...

Loot #2

Lessons Learned:
Vulnerability:
● Secret was found and replaced, with no additional validation.

How to fix:
● Secrets should be hashed, so they are difficult / impossible to

locate.
● Keys should not be generated locally, but instead supplied by

a trusted third party.

Challenge #3

Plan of Attack
● Launch a “Sybil” Attack

– Introduce malicious nodes as the network.
– Behave exactly like legitimate nodes.
– Have time set to the future.
– Disable internet access and force local nodes.

TimeLock Uses DNS Seed Nodes

● seed.bitcoin.spia.be

● bitseed.xf2.org

● dnsseed.bitcoin.dashjr.org

● dnsseed.bluematt.org

● missionctrl.info

Rolling Our Own DNS

Adding Randomised DNS Entries to Lookup

Starting Our Bitcoin Node

Did We Hack The Thing Yet?

When Stuck – Search Strings

Determining How Seed Nodes are Added

Open Debugger; Set Breakpoint

Breakpoint Hits, Familiar DNS Entry

What Happens If We Do It Again?

Modify DNS Entry, Avoid Conflicts

Looks Promising...

Loot #3

Lessons Learned:
Vulnerability:

● DNS cannot be trusted, can be easily manipulated.

● Executables cannot be trusted as attackers can easily redirect execution flow.

● No attestation performed on connected nodes.

How to fix:

● Tunnel DNS via own dnssec validating resolver.

● Validate nodes, in this case, verify blockchain?

● No internet access should raise alarm bells.

● Do not peer with localhost.

Challenge #4

Plan of Attack
● Find encryption / decryption functions
● Review encryption:

– Look for improper use of modes.
– Look for weak algorithms.

Anti Debugging Measures?

Patch Out CreateThread To Defeat Anti Debugging

Search for fread, fwrite and Encryption

Stepping Over Function Call

Encryption Function

Generates single byte
keystream

XOR 1 byte plaintext with 1
byte keystream

Symmetric Encryption
● Ciphertext is deterministic:

– Same inputs create same outputs.

● Encryption is performed by xor...
– ... so we can “decrypt” by xoring again!

● We have symmetric encryption!

Extract Ciphertext, Create New LockBox

Replace Dummy Data With Ciphertext

Success! Symmetric Encryption Used!

Looks Promising...

Loot #4

Lessons Learned:
Vulnerability:
● Symmetric encryption means we could bypass decryption step completely.
● Ability to create lockboxes means we can use known plaintext attacks to

find vulnerabilities faster.

How to fix:
● Symmetric encryption does not provide any security if the secrets needed

to make keys are available
● Public – Private key based encryption schemes should be used instead.
● A trusted third party should be the only one with access to decryption keys.

Challenge #5

Plan of Attack
● Review crypto again:

– See if symmetric encryption is still used.
– Look for weak algorithms.
– Look for bad modes of encryption.

Locate Encryption Functions

Encryption and Decryption

Encryption Rounds One and Three

Rounds One and Three are Unchanged, Still Symmetric

Encryption Round Two

Decryption Round Two

Encryption Round Two is Not Symmetric

Game Plan
● Peel off one layer of encryption at a time:

– “encrypt” third round via symmetric encryption.
– “decrypt” second round.

● Hope for hardcoded constants, no time related secrets.

– “encrypt” first round via symmetric encryption.

Extracting Ciphertext, Third Round of Encryption

Extracting Ciphertext, Second
Round Decryption

Extracting Ciphertext and First Round of Encryption

Loot #5

Lessons Learned
Vulnerability found:
● Flawed encryption rounds may as well not be present at all.
● Crypto with hardcoded constants is easy to get around, since there are no

variable secrets like time.
● Nesting crypto with different properties to make up for their shortcomings

doesn’t work when they are each critically flawed.

How to fix:
● Adopt a public – private key encryption scheme, and use a trusted third

party to store keys and only provide access to authorised users.

The Case For Hackers In Dev Teams
● Auditing at end of development, right before production is not productive.

– Its irresponsible and costly.
– Deep flaws unlikely to be fixed before production.

● Security needs to be present at every step:
– Early design / architecture planning.
– Development.
– Testing.
– Deployment.
– Post production.

● Hackers are specifically trained to consider the “big picture” when it comes to complex
system interactions and spot small nuisances which are easily overlooked.

What Would a Robust TimeLock Look Like?

● Client and Server model.
● Secrets stored on trusted server.
● Data never leaves the client.
● Communication with public / private encryption systems.

– Server.priv stored on the server.
– Server.pub distributed to all clients.

Encryption
● Client wishes to make Lockbox:

– Client sends Server.pub(hash(password, answers),
start, stop)) to Server.

– Server stores hash(password, answers), start, stop.
– Server generates new lockbox.priv and lockbox.pub,

sends Server.priv(lockbox.pub) to client.
– Client makes lockbox.pub(data) + enc(answers).

Decryption
● Client wishes to decrypt:

– Client collects and sends
Server.pub(lockbox.pub(hash(password, answers))).

– Server decrypts. Verifies hash and checks time window.
– If correct, server sends

Server.priv(lockbox.priv(lockbox.priv)).
– Client decrypts with lockbox.priv(encdata).

Greetz
● u/cryptocomicon, for the interesting challenges.
● #kiwicon users for the weekday banter.

– I am captianyipe, btw.

● NSA for making Ghidra public and FOSS.
– Ghidra is the biggest thing to happen in reverse

engineering for quite some time...

About Me
● Sustaining Engineer at Canonical.

– Fixing Linux kernel gremlins in Ubuntu kernels.
– Come find me and chat about Linux or reversing =)

● Read my blog:

https://ruffell.nz

matthew@ruffell.nz

https://ruffell.nz/
mailto:matthew@ruffell.nz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

